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The reachable of a bilinear controllable system, in which the range of allowed control values is a convex polyhedron, is examined. 
Sufficient conditions of convexity of the reachable set, which enable the maximum principle to be used in the standard form are 
found. 0 2003 Elsevier Ltd. All rights reserved. 

The geometry of the reachable set of non-linear controllable systems has still not been sufficiently 
investigated. The analysis of the reachable set of controllable systems usually confines itself to 
determining the sufficient conditions for its compactness [l]; in [2] the reachable set of controllable 
systems was analysed only during short periods of time; in [3] the sufficient condition of the so-called 
A convexity of the reachable set of controllable systems is founded; while some problems linked to the 
geometry of the reachable set of bilinear systems were considered in [4,5]. 

Below we establish sufficient conditions for which the reachable set of a bilinear controllable system 
is convex. These conditions can be applied directly, unlike the results previously obtained, enabling us 
to use the maximum principle in standard form to analyse bilinear controllable systems effectively. 

We will consider the problem of the optimum speed of response with fixed ends for a smooth 
controllable system 

1 = f(x, u), x E M, u(.) E 9 (1) 

where A4 is a smooth C manifold regularly embedded in Rn, U is a convex compact polyhedron in R”, 
and 9 is the range of allowed controls consisting of all restricted measurable functions of time t taking 
values in U. 

Let F(u) be the point of phase space to which the controllable system (l), transfer from the initial 
point x0 in the time T under the influence of the allowed control u(s) E 9. We will call the set 

the reachable set F(9) of the controllable system (1) from the point x0 in time T. 
We will call 

@(u) auq = lim F(u+&q)-F(u) 
E-0 E 

the derivative F(u) with respect to the direction n(s) E 9. 
The mapping 

f:N-+M 

of the smooth (finite-dimensional or infinite-dimensional) manifold N onto the finite dimensional mani- 
fold A4 is called the mapping of constant rank if the rank of the differential (tangential mapping) 

afo 
ax : T,N + Tf&l 

is independent of x E N. 
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System (1) is called a controllable system of a constant rank if for any point x0 and for any T the rank 
of the mapping 

4-l - F(u) 

is independent of u(m) E 9 (however it can depend on x0 and T). 
We will consider the bilinear controllable system 

X, x E R”, u(e) = (u,, . . . . u,J E 9 (2) 

as a special case of system (l), where A and Bj (i = 1, . . . , m) are square matrices of the nth order. 
The sufficient conditions of constancy of the rank (relay conditions) for bilinear system (2) have the 

form [6] 
k m 

[B, adkABj] ’ = c c a$adaABp, i,j = 1, . . . . m, k = 0, 1, . . . (3) 
a=Op= 1 

where 

ad”AB = B, adAB = [A, B] = AB- BA 

ad k+lAB = [A,adkAB], k = 1,2, . . . 

We will assume that system (2) satisfies the relay conditions (3), i.e. it is a system of constant rank. 
Consequently, the plan 

l-I(u) = spanR 
{ 

mu) -J-p, UC.1 E 5% 
1 

which is an image of the differential 

is independent of the control u(*) E 9, i.e. n(u) = lI. 
Below we will denote the matrizant (the fundamental matrix) of the system 

by Q%Q 
Then [6, 71 

dXldt = P(t)X 

Q;(A) = eAr, A = const 

C&(A + B) = Q;(A)Q;(AdC&A)B) 

(4) 

(5) 

where 

AdAB = A-‘BA 

and the matrix function&(t) depends smoothly on the parameter u. 
We have 

F(u) = @(A + %4)x,, 8 = (B,, . . . . B,), 4.) E 9 (6) 

Theorem. The reachable set in a time T for a bilinear controllable system of constant rank (2) is convex, 
if a vector-function p(e) E 9 and a number h 2 0 are founded for any vector-functions u(e), II(.) E 9 
such that 
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R,T(AdQ;(e-‘adA%h+?sdA m(2)- u)) - E = hjAd*~(~-~“ABu)s-e~A~(~ - u)dO 
0 

(7) 

where E is the identity matrix. 

Proof. Let K be the non-empty set of the Banach space X. We recall (see [8, 91) that a set of points 
2) is called the Clarke tangent cone TK(x) to the set K at the pointx, that for any sequence of real numbers 
it), ti > 0, ti + 0 (i + -) and for any sequence {Xi}, Xi E X, Xi + x (i + -) a sequence exists {Vi}, 
uiEX,ui+U(i+m)suchthat 

xi+tiui~ K 

We will use the following convexity criterion [lo] to investigate the convexity of the reachable set for 
bilinear system (2): the closed set K with a non-empty domain in I%” is convex if and only if 

Kc TK(x), ‘dlxc K 

where TK(x) = x + ?-K(x); in addition K = x pK TK(x) 

The Clarke tangential cone to the set F(B) at the point F(u) can be represented [lo] in the form 

TF(9)(F(u)) = a~s3(u) 
since the mapping 

according to our assumptions, is a mapping of constant rank. 
Note that since G3 is a convex set, then 

9cC(u), VU(*)E 9 

In particular, since 
VE 9cC(u) = .+23(u) 

then 
v-u E T9(u), Vu(.) E 9 

and, accordingly, also 

h(U-U)E i%b(u), Vh20 

We will introduce the following notation 

0; = e-eadA2h, szf = no’<‘& 

Then, using Eqs (4) and (5) we have 

@A + %h) = eTAR;(AdeeA’&) = ~?~Ll,T(e-~“~%h) = eTA!.2; 

and according to Eqs (6) and (7) 

F(v) = F(u) +@A + ‘&)x,-&A + ‘%h)x, = F(u) +eTA(Rcj-i2,T)xo = 

= F(u) + eTAR;(sJy T Q,- E)x, = F(u) + eTAQ,T(i2,T(AdC2ff@e,-J - E)x, = 

T 

= F(u) + eTAi2~h~AdC@$-,&xo = F(u) + vX(p- u) E 

= F(u)+b’(~)(u) = TF(Q)(u) 
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To complete the proof is remains to show that the set F(s) has a non-empty domain. 
We will demonstrate that an affine plane containing F(s) exists relative to which set F(s) has a non- 

empty interior. 
We will consider the plane 

I-I’(u) = F(u) + I-I 

As was shown above F(s) C F(u) + II so that F(u) + II = F(U) + II for any u(e), U(S) E ‘3 i.e. the plane 

rI’( u) = I-I’ 

is correctly determined. 
Suppose dimII’ = k. We will show that F(int53) is an open subset of the plane II’. 
We will choose the functions 

qt.19 u2(-1, . . . . z)k(‘) E 9 

in such a way that the vectors 

(8) 

will generate the plane II’. 
Consider the mapping (everywhere below i, j = 1, . . . , k) 

k 

% : (El, E2, . . . . Ek)-F(u+z), z = ~EiVi, EiE R 
i=l 

If u(e) E into%, then the image of this mapping lies in 1 ci 1 for sufficiently small I;(intQ), since $3 is an 
open set. 

Further 

a% a 
q = %F(u+“) = $&A+~(u+T))x, = 

T 

= O;(A + f@u + X))jAda,e(A + f@u + ~))‘ihj(B)dOx,, 
0 

whence 

T 

aEj e,=e, =...= e,=o = 

@(u) nB(A + ~u)lAdn~(A + ~U)~ Uj(8)deXo = au Vj (9) 

0 

Vectors (9) are linearly independent due to the linear independence of vectors (8). Consequently, 
the rank of mapping % is equal to zero in k. Hence, F(u) is an internal point of the set F(int%) by the 
theorem of the inverse function, 

Emple. Consider the bilinear controllable system 

i, = (u, +u,)x,, 1, = x3, i3 = UIX3 

with controls 

l”il s l, i= I,2 



Here 

whence 
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000 
A= 001 9 Bl = diag{ 1,0, l}, B, = diag{ l,O, 0) 

000 

[B,, B21 = 0, adAB, = A, [B,, adAB,] = -adAB, 

adAB, = 0, ad2AB, = 0, [B,,adAB,] = 0 

Consequently, system (10) is a system of constant rank by virtue of conditions (3). 
We will introduce the notation 

Using the equalities 

-hdA e 4 = B, -B[A, B,] = 

we obtain 

10 0 
-ChdA 

0 0 -0 . e B2 = B2 

00 1 

A,+A,O 0 
O”,-, = e4”‘B,AI +eVBtiAB2A2 = 0 0 -8A, 

0 0 A2 

By relations (11) we have 

whence 

(11) 
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Hence Eq. (7) acquires the form of a set of equalities 

(12) 

(if u = U, then Eq. (7) is trivially satisfied for h = 0 and the arbitrary function u(e) E 9). 
It is easy to see that if u1 = 1, then A1 IO and YT I (a: and if u1 = -1 then A1 2 0 and ‘I!‘; 2 QT. 

If u2 = 1, then A2 5 0 and Y!: I (Dl and if u2 = -1, then A2 2 0 and YT 2 @. Thus functions u*(a), u2(*), 
1 u1 1, 1 uL2 1 I 1 satisfying Eqs (12) will be found for any u(e), U(S), 1 u 1, 12) I 5 1 due to the arbitrariness 
of the choice of h 2 0. 
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